

OPNFV Clover

	Clover User Guide

	OPNFV Clover Release Notes

	Clover Configuration Guide

	OPNFV Clover Design Specification

Clover User Guide

	Clover User Guide (Gambia Release)

Clover User Guide (Gambia Release)

This document provides the Clover user guide for the OPNFV Hunter release.

Description

Clover Hunter builds on previous release to further enhance the toolset for
cloud native network functions operations. The main emphasis on the release are:

	ONAP SDC on Istio with Clover providing visibility

	Clovisor enhancement and stability

What is in Hunter?

	Sample micro-service composed VNF named Service Delivery Controller (SDC)

	Istio 1.0 support

	clover-collector: gathers and collects metrics and traces from Prometheus and
Jaeger, and provides a single access point for such data

	Visibility: utilizes an analytic engine to correlate and organize data
collected by clover-collector

	cloverctl: Clover’s new CLI

	Clovisor: Clover’s cloud native, CNI-plugin agnostic network tracing tool

	Integration of HTTP Security Modules with Istio 1.0

	JMeter: integrating jmeter as test client

	Clover UI: sample UI to offer single pane view / configuration point of the
Clover system

Usage

	Please refer to configguildes for usage detail on various modules

OPNFV Clover Release Notes

	Version history

 This document provides Clover project’s release notes for the OPNFV Hunter release.

	Version history

	Important notes

	Summary

	Release Data

	Version change

	Reason for version

	Known Limitations, Issues and Workarounds

	System Limitations

	Known issues

	Workarounds

	Test Result

	References

Version history

	Date

	Ver.

	Author

	Comment

	2019-04-30

	Hunter 1.0

	Stephen Wong

	First draft

Important notes

The Clover project for OPNFV Hunter is tested on Kubernetes version 1.9 and
1.11. It is only tested on Istio 1.0.

Summary

Clover Hunter release further enhances the Gambia release by:

	Integration with ONAP SDC, running on Istio, to demonstrate Clover’s
visibility engine

	Network Tracing: Clovisor has significant stability and feature enhancements

Release Data

	Project

	Clover

	Repo/commit-ID

	

	Release designation

	Hunter

	Release date

	2019-05-10

	Purpose of the delivery

	OPNFV Hunter release

Version change

Module version changes

Document version changes

Clover Hunter has updated the config guide and user guide accordingly

Reason for version

Feature additions

See Summary above

Bug corrections

<None>

Known Limitations, Issues and Workarounds

System Limitations

TBD

Known issues

TBD

Workarounds

Test Result

References

Clover Configuration Guide

	Clover Controller Services Configuration Guide
	Overview

	Deploying Clover system services

	Exposing clover-controller

	Uninstall from Kubernetes environment

	Uninstall from Docker environment

	Clover SDC Sample Configuration Guide
	Overview

	Deploying the sample

	Using the sample

	Modifying the run-time configuration of services

	Advanced Usage

	Uninstall from Kubernetes envionment

	Uninstall from Docker environment

	JMeter Validation Configuration Guide
	Overview

	Deploying Clover JMeter service

	Using JMeter Validation

	Uninstall from Kubernetes environment

	Uninstall from Docker environment

	Clover Visibility Services Configuration Guide
	Overview

	Deploying the visibility engine

	Initializing visibility services

	Configure and control visibility

	Viewing visibility data

	Uninstall from Kubernetes envionment

	Uninstall from Docker environment

	ModSecurity Configuration Guide
	ModSecurity Overview

	Ingress traffic security enhancement

	Deploying the ModSecurity WAF

	ModSecurity configuration

	Spinnaker Configuration Guide
	Spinnaker Overview

	Setup Spinnaker

	Spinnaker Configuration

	Deploy Helm Charts

	Clovisor Configuration Guide
	No Configuration

	Using redis-cli

	Jaeger Collector Configuration

	Configure Monitoring Namespace and Labels

	Configure Egress Match IP address, Port Number, and Matching Pods

Clover Controller Services Configuration Guide

This document provides a guide to use the Clover controller services, which are introduced in
the Clover Gambia release.

Overview

Clover controller services allow users to control and access information about Clover
microservices. Two new components are added to Clover to facilitate an ephemeral, cloud native
workflow. A CLI interface with the name cloverctl interfaces to the Kubernetes (k8s)
API and also to clover-controller, a microservice deployed within the k8s cluster to
instrument other Clover k8s services including sample network services, visibility/validation
services and supporting datastores (redis, cassandra). The clover-controller service
provides message routing communicating REST with cloverctl or other API/UI interfaces and
gRPC to internal k8s cluster microservices. It acts as an internal agent and reduces the need
to expose multiple Clover services outside of a k8s cluster.

The clover-controller is packaged as a docker container with manifests to deploy
in a Kubernetes (k8s) cluster. The cloverctl CLI is packaged as a binary (Golang) within a
tarball with associated yaml files that can be used to configure and control other Clover
microservices within the k8s cluster via clover-controller. The cloverctl CLI can also
deploy/delete other Clover services within the k8s cluster for convenience.

The clover-controller service provides the following functions:

	REST API: interface allows CI scripts/automation to control sample network sample services,
visibility and validation services. Analyzed visibility data can be consumed by other
services with REST messaging.

	CLI Endpoint: acts as an endpoint for many cloverctl CLI commands using the
clover-controller REST API and relays messages to other services via gRPC.

	UI Dashboard: provides a web interface exposing visibility views to interact with
Clover visibility services. It presents analyzed visibility data and provides basic controls
such as selecting which user services visibility will track.

The cloverctl CLI command syntax is similar to k8s kubectl or istio istioctl CLI tools, using
a <verb> <noun> convention.

Help can be accessed using the --help option, as shown below:

$ cloverctl --help

Deploying Clover system services

Prerequisites

The following assumptions must be met before continuing on to deployment:

	Installation of Docker has already been performed. It’s preferable to install Docker CE.

	Installation of k8s in a single-node or multi-node cluster.

Download Clover CLI

Download the cloverctl binary from the location below:

$ curl -L https://github.com/opnfv/clover/raw/stable/gambia/download/cloverctl.tar.gz | tar xz
$ cd cloverctl
$ export PATH=$PWD:$PATH

To begin deploying Clover services, ensure the correct k8s context is enabled. Validate that
the CLI can interact with the k8s API with the command:

$ cloverctl get services

The command above must return a listing of the current k8s services similar to the output of
‘kubectl get svc –all-namespaces’.

Deploying clover-controller

To deploy the clover-controller service, use the command below:

$ cloverctl create system controller

The k8s pod listing below must include the clover-controller pod in the clover-system
namespace:

$ kubectl get pods --all-namespaces | grep clover-controller

NAMESPACE NAME READY STATUS
clover-system clover-controller-74d8596bb5-jczqz 1/1 Running

Exposing clover-controller

To expose the clover-controller deployment outside of the k8s cluster, a k8s NodePort
or LoadBalancer service must be employed.

Using NodePort

To use a NodePort for the clover-controller service, use the following command:

$ cloverctl create system controller nodeport

The NodePort default is to use port 32044. To modify this, edit the yaml relative
to the cloverctl path at yaml/controller/service_nodeport.yaml before invoking
the command above. Delete the nodePort: key in the yaml to let k8s select an
available port within the the range 30000-32767.

Using LoadBalancer

For k8s clusters that support a LoadBalancer service, such as GKE, one can be created for
clover-controller with the following command:

$ cloverctl create system controller lb

Setup with cloverctl CLI

The cloverctl CLI will communicate with clover-controller on the service exposed above
and requires the IP address of either the load balancer or a cluster node IP address, if a
NodePort service is used. For a LoadBalancer service, cloverctl will automatically find
the IP address to use and no further action is required.

However, if a NodePort service is used, an additional step is required to configure the IP
address for cloverctl to target. This may be the CNI (ex. flannel/weave) IP address or the IP
address of an k8s node interface. The cloverctl CLI will automatically determine the
NodePort port number configured. To configure the IP address, create a file named
.cloverctl.yaml and add a single line to the yaml file with the following:

ControllerIP: <IP addresss>

This file must be located in your HOME directory or in the same directory as the cloverctl
binary.

Uninstall from Kubernetes environment

Delete with Clover CLI

When you’re finished working with Clover system services, you can uninstall it with the
following command:

$ cloverctl delete system controller
$ cloverctl delete system controller nodeport # for NodePort
$ cloverctl delete system controller lb # for LoadBalancer

The commands above will remove the clover-controller deployment and service resources
created from the current k8s context.

Uninstall from Docker environment

The OPNFV docker image for the clover-controller can be removed with the following commands
from nodes in the k8s cluster.

$ docker rmi opnfv/clover-controller

Clover SDC Sample Configuration Guide

This document provides a guide to use the Service Delivery Controller (SDC) sample, which is
initially delivered in the Clover Fraser release.

Overview

The SDC is a sample set of web-oriented network services that allow the flow of ingress HTTP
traffic to be controlled and inspected in an Istio service mesh within Kubernetes. It provides
the ability to demonstrate the Istio sandbox including service mesh concepts and surrounding
tools including tracing, monitoring, and logging.

The SDC sample comprises the following services:

	Proxy - used to mirror traffic to security (snort-ids) services and propagate traffic
to load balancing services. In future releases, the proxy will process security alerts and
provide access control by blacklisting clients based on source IP address.

	Load Balancer - provides basic round-robin load balancing to other downstream
services without Istio provisions. Istio features built-in load balancing to provide
request routing for canary and A/B scenarios. The SDC sample employs both tiers
of load balancing to demonstrate how load balancing algorithms can be controlled to
address both network and application requirements.

	Intrusion Detection System - used to detect web security vulnerabilities using limited
set of rules/signatures and send security alerts to the proxy.

	Server - simple web servers used to terminate web requests from the load balancing
services to enable end-to-end traffic flow.

The table below shows key details of the sample Kubernetes manifest for the services
outlined above:

	Service

	Kubernetes
Deployment App Name

	Docker Image

	Ports

	Proxy

	proxy-access-control

	clover-ns-nginx-proxy

	HTTP: 9180
GRPC: 50054

	Load Balancers

	app: http-lb
version: http-lb-v1
version: http-lb-v2

	clover-ns-nginx-lb

	HTTP: 9180
GRPC: 50054

	Intrusion Detection
System (IDS)

	snort-ids

	clover-ns-snort-ids

	HTTP: 80, Redis: 6379
GRPC: 50052 (config)
GRPC: 50054 (alerts)

	Servers

	clover-server1
clover-server2
clover-server3
clover-server4
clover-server5

	clover-ns-nginx-server

	HTTP: 9180
GRPC: 50054

Additionally, the sample uses other ancillary elements including:

	A Redis in-memory data store for the snort IDS service to write alerts. It can also be used
by the Clover tracing module to analyze traces over time. Standard community containers of
Redis are employed by Clover.

	A Kubernetes Ingress resource (proxy-gateway) to manage external access to the service
mesh.

	Clover docker container that is used to invoke deployment and cleanup scripts for the sample.
It can also be used to execute scripts that modify run-time service configurations. Using the
container avoids the need to clone the source code.

	Optional deployment of Jaeger tracing and Prometheus monitoring tools with access to their
browser-based UIs.

[image: ../../_images/sdc_sample.png]
The diagram above shows the flow of web traffic where all blue arrows denote the path of incoming
HTTP requests through the service mesh. Requests are directed to the istio-ingress entry point
using the Ingress resource (proxy-gateway). Istio-ingress acts as a gateway and sends traffic
to the proxy-access-control service. Proxy-access-control mirrors traffic to the
snort-ids service for it to monitor all incoming HTTP requests. The snort-ids
asynchronously sends alert notifications to proxy-access-control over GRPC on port 50054,
which is denoted in red, and stores the details of the alert events into Redis for other services
to potentially inspect.

Proxy-access-control also sends traffic to the http-lb load balancing service. Http-lb
deploys two versions (http-lb-v1, http-lb-v2) of itself by sharing the same app name
(http-lb) but using a distinct version in the Kubernetes manifest. By default, without any
further configuration, Istio will load balance requests with a 50/50 percentage split among these
two http-lb versions. Both the load balancers are internally configured by default to send
traffic to clover-server1/2/3 in round-robin fashion.

A controlling agent that can reside inside or outside of the mesh can be used to modify the
run-time configuration of the services, which is denoted in green. Python sample scripts that
implement a GRPC client act as a control-agent and are used to reconfigure http-lb-v2 to load
balance across clover-server4/5 instead of servers 1/2/3. The sample provides additional
examples of modifying run-time configurations such as adding user-defined rules to the
snort-ids service to trigger alerts on other network events.

Deploying the sample

Prerequisites

The following assumptions must be met before continuing on to deployment:

	Ubuntu 16.04 was used heavily for development and is advised for greenfield deployments.

	Installation of Docker has already been performed. It’s preferable to install Docker CE.

	Installation of Kubernetes has already been performed. The installation in this guide was
executed in a single-node Kubernetes cluster.

	Installation of a pod network that supports the Container Network Interface (CNI). It is
recommended to use flannel, as most development work employed this network add-on. Success
using Weave Net as the CNI plugin has also been reported.

	Installation of Istio and Istio client (istioctl) is in your PATH (for deploy from source)

Deploy with Clover container

The easiest way to deploy the sample into your Kubernetes cluster is to use the Clover
container by pulling the container and executing a top-level deploy script using the following
two commands:

$ docker pull opnfv/clover:<release_tag>

The <release_tag> is opnfv-7.0.0 for the Gambia release. However, the latest
will be pulled if the tag is unspecified. To deploy the Gambia release use these commands:

$ docker pull opnfv/clover:opnfv-7.0.0
$ sudo docker run --rm \
-v ~/.kube/config:/root/.kube/config \
opnfv/clover \
/bin/bash -c '/home/opnfv/repos/clover/samples/scenarios/deploy.sh'

The deploy script invoked above begins by installing Istio 1.0.0 into your Kubernetes environment.
It proceeds to deploy the entire SDC manifest. If you’ve chosen to employ this method of
deployment, you may skip the next section.

Deploy from source

Ensure Istio 1.0.0 is installed, as a prerequisite, using the following commands:

$ curl -L https://github.com/istio/istio/releases/download/1.0.0/istio-1.0.0-linux.tar.gz | tar xz
$ cd istio-1.0.0
$ export PATH=$PWD/bin:$PATH
$ kubectl apply -f install/kubernetes/istio-demo.yaml

The above sequence of commands installs Istio with manual sidecar injection without mutual TLS
authentication between sidecars.

To continue to deploy from the source code, clone the Clover git repository and navigate
within the samples directory as shown below:

$ git clone https://gerrit.opnfv.org/gerrit/clover
$ cd clover/samples/scenarios
$ git checkout stable/gambia

To deploy the sample in the default Kubernetes namespace, use the following command for Istio
manual sidecar injection:

$ istioctl kube-inject -f service_delivery_controller_opnfv.yaml | kubectl apply -f -

To deploy in another namespace, use the ‘-n’ option. An example namespace of ‘sdc’ is shown below:

$ kubectl create namespace sdc
$ istioctl kube-inject -f service_delivery_controller_opnfv.yaml | kubectl apply -n sdc -f -

When using the above SDC manifest, all required docker images will automatically be pulled
from the OPNFV public Dockerhub registry. An example of using a Docker local registry is also
provided in the /clover/samples/scenario directory.

Verifying the deployment

To verify the entire SDC sample is deployed, ensure the following pods have been deployed
with the command below:

$ kubectl get pod --all-namespaces

The listing below must include the following SDC pods assuming deployment in the default
Kubernetes namespace:

$ NAMESPACE NAME READY STATUS
default clover-server1-68c4755d9c-7s5q8 2/2 Running
default clover-server2-57d8b786-rf5x7 2/2 Running
default clover-server3-556d5f79cf-hk6rv 2/2 Running
default clover-server4-6d9469b884-8srbk 2/2 Running
default clover-server5-5d64f74bf-l7wqc 2/2 Running
default http-lb-v1-59946c5744-w658d 2/2 Running
default http-lb-v2-5df78b6849-splp9 2/2 Running
default proxy-access-control-6b564b95d9-jg5wm 2/2 Running
default redis 2/2 Running
default snort-ids-5cc97fc6f-zhh5l 2/2 Running

The result of the Istio deployment must include the following pods:

$ NAMESPACE NAME READY STATUS
istio-system grafana-6995b4fbd7-pjgbh 1/1 Running
istio-system istio-citadel-54f4678f86-t2dng 1/1 Running
istio-system istio-egressgateway-5d7f8fcc7b-hs7t4 1/1 Running
istio-system istio-galley-7bd8b5f88f-wtrdv 1/1 Running
istio-system istio-ingressgateway-6f58fdc8d7-vqwzj 1/1 Running
istio-system istio-pilot-d99689994-b48nz 2/2 Running
istio-system istio-policy-766bf4bd6d-l89vx 2/2 Running
istio-system istio-sidecar-injector-85ccf84984-xpmxp 1/1 Running
istio-system istio-statsd-prom-bridge-55965ff9c8-q25rk 1/1 Running
istio-system istio-telemetry-55b6b5bbc7-qrg28 2/2 Running
istio-system istio-tracing-77f9f94b98-zljrt 1/1 Running
istio-system prometheus-7456f56c96-zjd29 1/1 Running
istio-system servicegraph-684c85ffb9-9h6p7 1/1 Running

Determining the ingress IP and port

To determine how incoming http traffic on port 80 will be translated, use the following command:

$ kubectl get svc -n istio-system | grep LoadBalancer
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
istio-ingressgateway LoadBalancer 10.111.40.165 <pending> 80:32410/TCP,443:31390/TCP

Note, the CLUSTER-IP of the service will be unused in this example since load balancing service
types are unsupported in this configuration. It is normal for the EXTERNAL-IP to show status
<pending> indefinitely

In this example, traffic arriving on port 32410 will flow to istio-ingressgateway. The
istio-ingressgateway service will route traffic to the proxy-access-control service based on
configured Istio Gateway and VirtualService resources, which are shown below. The
Gateway defines a gateway for external traffic to enter the Istio service mesh based on
incoming protocol, port and domain (hosts: section currently using wildcard). The
VirtualService associates to a particular Gateway (sdc-gateway here) and allows for route
rules to be setup. In the example below, any URL with prefix ‘/’ will be routed to the service
proxy-access-control on port 9180. Additionally, ingress traffic can be mirrored by
adding a directive to the VirtualService definition. Below, all matching traffic will be
mirrored to the snort-ids (duplicating internal mirroring performed by the
proxy-access-control for illustrative purposes)

This allows the traffic management and policy features of Istio available to external services and
clients.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: sdc-gateway
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: sdcsample
spec:
 hosts:
 - "*"
 gateways:
 - sdc-gateway
 http:
 - match:
 - uri:
 prefix: /
 route:
 - destination:
 host: proxy-access-control
 port:
 number: 9180
 mirror:
 host: snort-ids

Using the sample

To confirm the scenario is running properly, HTTP GET requests can be made from an external
host with a destination of the Kubernetes cluster. Requests can be invoked from the host OS
of the Kubernetes cluster. Modify the port used below (32410) with the port obtained from section
Determining the ingress IP and port. If flannel is being used, requests can use the default
flannel CNI IP address, as shown below:

$ wget http://10.244.0.1:32410/
$ curl http://10.244.0.1:32410/

An IP address of a node within the Kubernetes cluster may also be employed.

An HTTP response will be returned as a result of the wget or curl command, if the SDC sample
is operating correctly. However, the visibility into what services were accessed within
the service mesh remains hidden. The next section Exposing tracing and monitoring shows how
to inspect the internals of the Istio service mesh.

Exposing tracing and monitoring

The Jaeger tracing UI is exposed outside of the Kubernetes cluster via any node IP in the cluster
using the following commands (above command already executes the two commands below):

$ kubectl expose -n istio-system deployment istio-tracing --port=16686 --type=NodePort

Likewise, the Prometheus monitoring UI is exposed with the following command:

$ kubectl expose -n istio-system deployment prometheus --port=9090 --type=NodePort

To find the ports the Jaeger tracing and Prometheus monitoring UIs are exposed on, use the
following command:

$ kubectl get svc -n istio-system | grep NodePort
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
istio-system istio-tracing NodePort 10.105.94.85 <none> 16686:32174/TCP
istio-system prometheus NodePort 10.97.74.230 <none> 9090:32708/TCP

In the example above, the Jaeger tracing web-based UI will be available on port 32174 and
the Prometheus monitoring UI on port 32708. In your browser, navigate to the following
URLs for Jaeger and Prometheus respectively:

http://<node IP>:32174
http://<node IP>:32708

Where node IP is an IP of one of the Kubernetes cluster node(s) on a CNI IP address.
Alternatively, the tracing and monitoring services can be exposed with a LoadBalancer
service if supported by your Kubernetes cluster (such as GKE), as shown below for tracing:

kind: Service
apiVersion: v1
metadata:
 name: istio-tracing
spec:
 selector:
 app: jaeger
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 16686
 type: LoadBalancer

[image: ../../_images/sdc_tracing.png]
The diagram above shows the Jaeger tracing UI after traces have been fetched for the
proxy-access-control service. After executing an HTTP request using the simple curl/wget
commands outlined in Using the sample , a list of SDC services will be displayed
in the top left drop-down box labelled Service. Choose proxy-access-control in
the drop-down and click the Find Traces button at the bottom of the left controls.
The blue box denotes what should be displayed for the services that were involved in
handling the request including:

	istio-ingressgateway

	proxy-access-control

	snort-ids

	http-lb

	clover-server1 OR clover-server2 OR clover-server3

The individual traces can be clicked on to see the details of the messages between services.

Modifying the run-time configuration of services

The following control-plane actions can be invoked via GRPC messaging from a controlling agent.
For this example, it is conducted from the host OS of a Kubernetes cluster node using Clover
system services. This requires clover-controller and cloverctl CLI be deployed. See
instructions at Deploying clover-controller.

Modifying the http-lb server list

By default, both versions of the load balancers send incoming HTTP requests to
clover-server1/2/3 in round-robin fashion. To have the version 2 load balancer
(http-lb-v2) send its traffic to clover-server4/5 instead, issue the following command
from the cloverctl CLI:

$ cloverctl set lb -f lbv2.yaml

The lbv2.yaml is available from the yaml directory relative to the cloverctl binary.

If the command executes successfully, the return message should appear as below:

Modified nginx config

If several more HTTP GET requests are subsequently sent to the ingress, the Jaeger UI should
begin to display requests flowing to clover-server4/5 from http-lb-v2. The http-lb-v1
version of the load balancer will still balance requests to clover-server1/2/3.

Adding rules to snort-ids

The snort service installs the readily available community rules. An initial, basic provision to
allow custom rule additions has been implemented within this release. A custom rule will trigger
alerts and can be defined in order to inspect network traffic. This capability, including
rule manipulation, will be further expounded upon in subsequent releases. For the time being, the
following basic rule additions can be performed using a client sample script.

A snort IDS alert can be triggered by adding the HTTP User-Agent string shown below. The
signature that invokes this alert is part of the community rules that are installed in the
snort service by default. Using the curl or wget commands below, an alert can be observed using
the Jaeger tracing browser UI. It will be displayed as a GRPC message on port 50054 from the
snort-ids service to the proxy-access-control service. The red box depicted in the
Jaeger UI diagram in section Exposing tracing and monitoring shows what should be displayed
for the alerts. Drilling down into the trace will show a GPRC message from snort with HTTP URL
http://proxy-access-control:50054/nginx.Controller/ProcessAlerts.

$ wget -U 'asafaweb.com' http://10.244.0.1:32410/

Or alternatively with curl, issue this command to trigger the alert:
:
.. code-block:: bash

$ curl -A ‘asafaweb.com’ http://10.244.0.1:32410/

The community rule can be copied to local rules in order to ensure an alert is generated
each time the HTTP GET request is observed by snort using the following commands from
the cloverctl CLI:

$ cloverctl create idsrules -f idsrule_scan.yaml
$ cloverctl stop ids
$ cloverctl start ids

The idsrule_scan.yaml is available from the yaml directory relative to the cloverctl
binary. Successful completion of the above commands will yield output similar to the following:

Added to local rules
Stopped Snort on pid: 48, Cleared Snort logs
Started Snort on pid: 155

To add an ICMP rule to snort service, use the following command:

$ cloverctl create idsrules -f idsrule_icmp.yaml
$ cloverctl stop ids
$ cloverctl start ids

The idsrule_icmp.yaml is available from the yaml directory relative to the cloverctl

Successful execution of the above commands will trigger alerts whenever ICMP packets are observed
by the snort service. An alert can be generated by pinging the snort service using the flannel IP
address assigned to the snort-ids pod. The Jaeger UI can again be inspected and should display
the same ProcessAlert messages flowing from the snort-ids to the proxy-access-control
service for ICMP packets.

Advanced Usage

Inspect Redis

This section assumes alert messages have already been successfully generated from the
snort-ids service using the instructions outlined in section Adding rules to snort-ids.

The snort-ids service writes the details of alert events into a Redis data store deployed
within the Kubernetes cluster. This event and packet data can be inspected by first
installing the redis-tools Linux package on one of the nodes within the Kubernetes cluster.
For a Ubuntu host OS, this can be performed with the following command:

$ sudo apt-get install redis-tools

Assuming a flannel CNI plugin, Redis can then be accessed by finding the IP assigned to the
Redis pod with the command:

$ kubectl get pod --all-namespaces -o wide
NAMESPACE NAME READY STATUS RESTARTS AGE IP
default redis 2/2 Running 0 2d 10.244.0.176

In the example listing above, the Redis pod IP is at 10.244.0.176. This IP can be used to
access the Redis CLI with the command:

$ redis-cli -h 10.244.0.176
10.244.0.176:6379>

The redis CLI prompt ensues and the alert event indexes can be fetched with the Redis SMEMBERS
set command with the key snort_events for the argument, as shown below:

10.244.0.176:6379> SMEMBERS snort_events
1) "1"
2) "2"
3) "3"
4) "4"
5) "5"
6) "6"

The individual alert details are stored as Redis hashes and can be retrieved with the
Redis HGETALL hash command to get the values of the entire hash with key
snort_event:1 formed by using the prefix of snort_event: concatenated with an index
retrieved from the prior listing output from the SMEMBERS command, as shown below:

10.244.0.176:6379> HGETALL snort_event:1
1) "blocked"
2) "0"
3) "packet-microsecond"
4) "726997"
5) "packet-second"
6) "1524609217"
7) "pad2"
8) "None"
9) "destination-ip"
10) "10.244.0.183"
11) "signature-revision"
12) "1"
13) "signature-id"
14) "10000001"
15) "protocol"
16) "1"
17) "packets"
18) "[]"
19) "source-ip.raw"
20) "\n\xf4\x00\x01"
21) "dport-icode"
22) "0"
23) "extra-data"
24) "[]"
25) "length"
26) "98"
27) "priority"
28) "0"
29) "linktype"
30) "1"
31) "classification-id"
32) "0"
33) "event-id"
34) "1"
35) "destination-ip.raw"
36) "\n\xf4\x00\xb7"
37) "generator-id"
38) "1"
39) "appid"
40) "None"
41) "sport-itype"
42) "8"
43) "event-second"
44) "1524609217"
45) "impact"
46) "0"
47) "data"
48) "\nX\n\xf4\x00\xb7\nX\n\xf4\x00\x01\b\x00E\x00\x00T\x95\x82@\x00@\x01\x8e\x87\n\xf4\x00\x01\n\xf4\x00\xb7\b\x00T\x06{\x02\x00\x01\xc1\xb0\xdfZ\x00\x00\x00\x00\xbe\x17\x0b\x00\x00\x00\x00\x00\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\"#$%&'()*+,-./01234567"
49) "mpls-label"
50) "None"
51) "sensor-id"
52) "0"
53) "vlan-id"
54) "None"
55) "event-microsecond"
56) "726997"
57) "source-ip"
58) "10.244.0.1"
59) "impact-flag"
60) "0"

The alert above was generated for an ICMP packet after adding the custom rule for ICMP outlined in
section Adding rules to snort-ids. The ICMP rule/signature ID that was used when adding the
custom rule is 10000001 and is output in the above listing.

To exit the Redis CLI, use the command exit.

Uninstall from Kubernetes envionment

Delete with Clover container

When you’re finished working on the SDC sample, you can uninstall it with the
following command:

 $ sudo docker run --rm \
-v ~/.kube/config:/root/.kube/config \
opnfv/clover \
/bin/bash -c '/home/opnfv/repos/clover/samples/scenarios/clean.sh'

The command above will remove the SDC sample services, Istio components and Jaeger/Prometheus
tools from your Kubernetes environment.

Delete from source

The SDC sample services can be uninstalled from the source code using the commands below:

$ cd clover/samples/scenarios
$ kubectl delete -f service_delivery_controller_opnfv.yaml

pod "redis" deleted
service "redis" deleted
deployment "clover-server1" deleted
service "clover-server1" deleted
deployment "clover-server2" deleted
service "clover-server2" deleted
deployment "clover-server3" deleted
service "clover-server3" deleted
deployment "clover-server4" deleted
service "clover-server4" deleted
deployment "clover-server5" deleted
service "clover-server5" deleted
deployment "http-lb-v1" deleted
deployment "http-lb-v2" deleted
service "http-lb" deleted
deployment "snort-ids" deleted
service "snort-ids" deleted
deployment "proxy-access-control" deleted
service "proxy-access-control" deleted
ingress "proxy-gateway" deleted

Istio components will not be uninstalled with the above command, which deletes using the SDC
manifest file. To remove the Istio installation, navigate to the root directory where Istio
was installed from source and use the following command:

$ cd istio-1.0.0
$ kubectl delete -f install/kubernetes/istio-demo.yaml

Uninstall from Docker environment

The OPNFV docker images can be removed with the following commands:

$ docker rmi opnfv/clover-ns-nginx-proxy
$ docker rmi opnfv/clover-ns-nginx-lb
$ docker rmi opnfv/clover-ns-nginx-server
$ docker rmi opnfv/clover-ns-snort-ids
$ docker rmi opnfv/clover

If deployment was performed with the Clover container, the first four images above will not
be present. The Redis docker images can be removed with the following commands, if deployed
from source:

$ docker rmi k8s.gcr.io/redis
$ docker rmi kubernetes/redis

If docker images were built locally, they can be removed with the following commands:

$ docker rmi localhost:5000/clover-ns-nginx-proxy
$ docker rmi clover-ns-nginx-proxy
$ docker rmi localhost:5000/clover-ns-nginx-lb
$ docker rmi clover-ns-nginx-lb
$ docker rmi localhost:5000/clover-ns-nginx-server
$ docker rmi clover-ns-nginx-server
$ docker rmi localhost:5000/clover-ns-snort-ids
$ docker rmi clover-ns-snort-ids

JMeter Validation Configuration Guide

This document provides a guide to use the JMeter validation service, which is introduced in
the Clover Gambia release.

Overview

Apache JMeter [https://jmeter.apache.org/] is a mature, open source application that supports web client emulation. Its
functionality has been integrated into the Clover project to allow various CI validations
and performance tests to be performed. The system under test can either be REST services/APIs
directly or a set of L7 network services. In the latter scenario, Clover nginx servers may
be employed as an endpoint to allow traffic to be sent end-to-end across a service chain.

The Clover JMeter integration is packaged as docker containers with manifests to deploy
in a Kubernetes (k8s) cluster. The Clover CLI (cloverctl) can be used to configure and
control the JMeter service within the k8s cluster via clover-controller.

The Clover JMeter integration has the following attributes:

	Master/Slave Architecture: uses the native master/slave implementation of JMeter. The master
and slaves have distinct OPNFV docker containers for rapid deployment and usage. Slaves allow
the scale of the emulation to be increased linearly for performance testing. However, for
functional validations and modest scale, the master may be employed without any slaves.

	Test Creation & Control: JMeter makes use of a rich XML-based test plan. While this offers
a plethora of configurable options, it can be daunting for a beginner user to edit directly.
Clover provides an abstracted yaml syntax exposing a subset of the available configuration
parameters. JMeter test plans are generated on the master and tests can be started from
cloverctl CLI.

	Result Collection: summary log results and detailed per-request results can be retrieved
from the JMeter master during and after tests from the cloverctl or from a REST API exposed
via clover-controller.

[image: ../../_images/jmeter_overview.png]

Deploying Clover JMeter service

Prerequisites

The following assumptions must be met before continuing on to deployment:

	Installation of Docker has already been performed. It’s preferable to install Docker CE.

	Installation of k8s in a single-node or multi-node cluster.

	Clover CLI (cloverctl) has been downloaded and setup. Instructions to deploy can be found
at Deploying clover-controller

	The clover-controller service is deployed in the k8s cluster the validation services will
be deployed in. Instructions to deploy can be found at Deploying clover-controller.

Deploy with Clover CLI

The easiest way to deploy Clover JMeter validation services into your k8s cluster is to use the
cloverctl CLI using the following command:

$ cloverctl create system validation

Container images with the Gambia release tag will pulled if the tag is unspecified. The release
tag is opnfv-7.0.0 for the Gambia release. To deploy the latest containers from master, use
the command shown below:

$ cloverctl create system validation -t latest

The Clover CLI will add master/slave pods to the k8s cluster in the default namespace.

The JMeter master/slave docker images will automatically be pulled from the OPNFV public
Dockerhub registry. Deployments and respective services will be created with three slave
replica pods added with the clover-jmeter-slave prefix. A single master pod will be
created with the clover-jmeter-master prefix.

Deploy from source

To continue to deploy from the source code, clone the Clover git repository and navigate
within to the directory, as shown below:

$ git clone https://gerrit.opnfv.org/gerrit/clover
$ cd clover/clover/tools/jmeter/yaml
$ git checkout stable/gambia

To deploy the master use the following two commands, which will create a manifest with
the Gambia release tags and creates the deployment in the k8s cluster:

$ python render_master.py --image_tag=opnfv-7.0.0 --image_path=opnfv
$ kubectl create -f clover-jmeter-master.yaml

JMeter can be injected into an Istio service mesh. To deploy in the default
namespace within the service mesh, use the following command for manual
sidecar injection:

$ istioctl kube-inject -f clover-jmeter-master.yaml | kubectl apply -f -

Note, when injecting JMeter into the service mesh, only the master will function for
the Clover integration, as master-slave communication is known not to function with the Java
RMI API. Ensure ‘istioctl’ is in your path for the above command.

To deploy slave replicas, render the manifest yaml and create in k8s adjusting the
--replica_count value for the number of slave pods desired:

$ python render_slave.py --image_tag=opnfv-7.0.0 --image_path=opnfv --replica_count=3
$ kubectl create -f clover-jmeter-slave.yaml

Verifying the deployment

To verify the validation services are deployed, ensure the following pods are present
with the command below:

$ kubectl get pod --all-namespaces

The listing below must include the following pods assuming deployment in the default
namespace:

NAMESPACE NAME READY STATUS
default clover-jmeter-master-688677c96f-8nnnr 1/1 Running
default clover-jmeter-slave-7f9695d56-8xh67 1/1 Running
default clover-jmeter-slave-7f9695d56-fmpz5 1/1 Running
default clover-jmeter-slave-7f9695d56-kg76s 1/1 Running
default clover-jmeter-slave-7f9695d56-qfgqj 1/1 Running

Using JMeter Validation

Creating a test plan

To employ a test plan that can be used against the Clover SDC Sample Configuration Guide sample, navigate to
cloverctl yaml directory and use the sample named ‘jmeter_testplan.yaml’, which is shown below.

load_spec:
 num_threads: 5
 loops: 2
 ramp_time: 60
 duration: 80
url_list:
 - name: url1
 url: http://proxy-access-control.default:9180
 method: GET
 user-agent: chrome
 - name: url2
 url: http://proxy-access-control.default:9180
 method: GET
 user-agent: safari

	The composition of the yaml file breaks down as follows:

	
	load_spec section of the yaml defines the load profile of the test.

	num_threads` parameter defines the maximum number of clients/users the test will emulate.

	ramp_time determines the rate at which threads/users will be setup.

	loop parameter reruns the same test and can be set to 0 to loop forever.

	duration parameter is used to limit the test run time and be used as a hard cutoff when
using loop forever.

	url_list section of the yaml defines a set of HTTP requests that each user will perform.
It includes the request URL that is given a name (used as reference in detailed per-request
results) and the HTTP method to use (ex. GET, POST). The user-agent parameter allows this
HTTP header to be specified per request and can be used to emulate browsers and devices.

The url syntax is <domain or IP>:<port #>. The colon port number may be omitted if port 80
is intended.

The test plan yaml is an abstraction of the JMeter XML syntax (uses .jmx extension) and can be
pushed to the master using the cloverctl CLI with the following command:

$ cloverctl create testplan –f jmeter_testplan.yaml

The test plan can now be executed and will automatically be distributed to available JMeter slaves.

Starting the test

Once a test plan has been created on the JMeter master, a test can be started for the test plan
with the following command:

$ cloverctl start testplan

The test will be executed from the clover-jmeter-master pod, whereby HTTP requests will
originate directly from the master. The number of aggregate threads/users and request rates
can be scaled by increasing the thread count or decreasing the ramp time respectively in the
test plan yaml. However, the scale of the test can also be controlled by adding slaves to the
test. When slaves are employed, the master will only be used to control slaves and will not be
a source of traffic. Each slave pod will execute the test plan in its entirety.

To execute tests using slaves, add the flag ‘-s’ to the start command from the Clover CLI as shown
below:

$ cloverctl start testplan –s <slave count>

The clover-jmeter-slave pods must be deployed in advance before executing the above command. If
the steps outlined in section Deploy with Clover CLI have been followed, three slaves will
have already been deployed.

Retrieving Results

Results for the test can be obtained by executing the following command:

$ cloverctl get testresult
$ cloverctl get testresult log

The bottom of the log will display a summary of the test results, as shown below:

3 in 00:00:00 = 111.1/s Avg: 7 Min: 6 Max: 8 Err: 0 (0.00%)
20 in 00:00:48 = 0.4/s Avg: 10 Min: 6 Max: 31 Err: 0 (0.00%)

Each row of the summary table is a snapshot in time with the final numbers in the last row.
In this example, 20 requests (5 users/threads x 2 URLs) x loops) were sent successfully
with no HTTP responses with invalid/error (4xx/5xx) status codes. Longer tests will produce
a larger number of snapshot rows. Minimum, maximum and average response times are output per
snapshot.

To obtain detailed, per-request results use the detail option, as shown below:

$ cloverctl get testresult detail

1541567388622,14,url1,200,OK,ThreadGroup 1-4,text,true,,843,0,1,1,14,0,0
1541567388637,8,url2,200,OK,ThreadGroup 1-4,text,true,,843,0,1,1,8,0,0
1541567388646,6,url1,200,OK,ThreadGroup 1-4,text,true,,843,0,1,1,6,0,0
1541567388653,7,url2,200,OK,ThreadGroup 1-4,text,true,,843,0,1,1,7,0,0
1541567400622,12,url1,200,OK,ThreadGroup 1-5,text,true,,843,0,1,1,12,0,0
1541567400637,8,url2,200,OK,ThreadGroup 1-5,text,true,,843,0,1,1,8,0,0
1541567400645,7,url1,200,OK,ThreadGroup 1-5,text,true,,843,0,1,1,7,0,0
1541567400653,6,url2,200,OK,ThreadGroup 1-5,text,true,,843,0,1,1,6,0,0

	Columns are broken down on the following fields:

	
	timeStamp, elapsed, label, responseCode, responseMessage, threadName, dataType, success

	failureMessage bytes, sentBytes, grpThreads, allThreads, Latency, IdleTime, Connect

elapsed or Latency values are in milliseconds.

Uninstall from Kubernetes environment

Delete with Clover CLI

When you’re finished working with JMeter validation services, you can uninstall it with the
following command:

$ cloverctl delete system validation

The command above will remove the clover-jmeter-master and clover-jmeter-slave deployment
and service resources from the current k8s context.

Delete from source

The JMeter validation services can be uninstalled from the source code using the commands below:

$ cd clover/samples/scenarios
$ kubectl delete -f clover-jmeter-master.yaml
$ kubectl delete -f clover-jmeter-slave.yaml

Uninstall from Docker environment

The OPNFV docker images can be removed with the following commands from nodes
in the k8s cluster.

$ docker rmi opnfv/clover-jmeter-master
$ docker rmi opnfv/clover-jmeter-slave
$ docker rmi opnfv/clover-controller

Clover Visibility Services Configuration Guide

This document provides a guide to use Clover visibility services, which are initially delivered in
the Clover Gambia release. A key assumption of this guide is that Istio 1.0.x has been deployed
to Kubernetes (k8s), as it is a foundational element for Clover visibility services.

Overview

Clover visibility services are an integrated set of microservices that allow HTTP/gRPC traffic to
be observed and analyzed in an Istio service mesh within k8s managed clusters. It leverages
observability open source projects from the CNCF community such as Jaeger for distributed tracing
and Prometheus for monitoring. These tools are packaged with Istio and service mesh sidecars have
extensive hooks built in to interface with them. They gather low-level, per HTTP request driven
data. Clover visibility services focus on enriching the data, gathering it from various sources
and analyzing it at the system or aggregate level.

The visibility services are comprised of the following microservices all deployed within the
clover-system namespace in a k8s cluster:

	clover-controller - exposes REST interface external to the k8s cluster and
used to relay messages to other Clover services via gRPC from external agents including
cloverctl CLI, web browsers and other APIs, scripts or CI jobs. It incorporates a web
application with dashboard views to consume analyzed visibility data and control other
Clover services.

	clover-collector - gathers data from tracing (Jaeger) and monitoring (Prometheus)
infrastructure that is integrated with Istio using a pull model.

	clover-spark - is a Clover specific Apache Spark service. It leverages Spark 2.3.x native
k8s support and includes visibility services artifacts to execute Spark jobs.

	clover-spark-submit - simple service to continually perform Spark job submits interacting
with the k8s API to spawn driver and executor pods.

	cassandra - a sink for visibility data from clover-collector with specific schemas
for monitoring and tracing.

	redis - holds configuration data and analyzed data for visibility services. Used by
clover-controller web application and REST API to maintain state and exchange data.

The table below shows key details of the visibility service manifests outlined above:

	Service

	Kubernetes
Deployment App Name

	Docker Image

	Ports

	Controller

	clover-controller

	opnfv/clover-controller

	HTTP: 80 (external)
gRPC: 50052, 50054

	Collector

	clover-collector

	opnfv/clover-collector

	Jaeger: 16686
Prometheus: 9090
gRPC: 50054
Datastore: 6379, 9042

	Spark

	clover-spark
clover-spark-submit

	opnfv/clover-spark
opnfv/clover-spark-submit

	Datastore: 6379, 9042

	Data Stores

	cassandra
redis

	cassandra:3
k8s.gcr.io/redis:v1
kubernetes/redis:v1

	9042
6379

The redis and cassandra data stores use community container images while the other
services use Clover-specific Dockerhub OPNFV images.

Additionally, visibility services are operated with the cloverctl CLI. Further information on
setting up clover-controller and cloverctl can be found at
Clover Controller Services Configuration Guide.

[image: ../../_images/visibility_overview.png]
The diagram above shows the flow of data through the visibility services where all blue arrows
denote the path of data ingestion originating from the observability tools. The
clover-collector reads data from these underlying tools using their REST query interfaces
and inserts into schemas within the cassandra data store.

Apache Spark jobs are used to analyze data within cassandra. Spark is deployed using native
Kubernetes support added since Spark version 2.3. The clover-spark-submit
container continually submits jobs to the Kubernetes API. The API spawns a Spark driver pod which
in turn spawns executor pods to run Clover-specific jobs packaged in the clover-spark
service.

Analyzed data from clover-spark jobs is written to redis, an in-memory data store. The
clover-controller provides a REST API for the analyzed visibility data to be read by other
services (cloverctl, CI jobs, etc.) or viewed using a Clover provided visibility web
dashboard.

Deploying the visibility engine

Prerequisites

The following assumptions must be met before continuing on to deployment:

	Installation of Docker has already been performed. It’s preferable to install Docker CE.

	Installation of k8s in a single-node or multi-node cluster with at least
twelve cores and 16GB of memory. Google Kubernetes Engine (GKE) clusters are supported.

	Installation of Istio in the k8s cluster. See Deploy with Clover container.

	Clover CLI (cloverctl) has been downloaded and setup. Instructions to deploy can be found
at Deploying clover-controller.

Deploy with Clover CLI

To deploy the visibility services into your k8s cluster use the cloverctl CLI command
shown below:

$ cloverctl create system visibility

Container images with the Gambia release tag will pulled if the tag is unspecified. The release
tag is opnfv-7.0.0 for the Gambia release. To deploy the latest containers from master, use
the command shown below:

$ cloverctl create system visibility -t latest

Using config file: /home/earrage/.cloverctl.yaml
Creating visibility services
Created clover-system namespace
Created statefulset "cassandra".
Created service "cassandra"
Created pod "redis".
Created service "redis"
Created deployment "clover-collector".
Image: opnfv/clover-collector:latest
Created service "clover-collector"
Created deployment "clover-controller".
Image: opnfv/clover-controller:latest
Created service "clover-controller-internal"
Created serviceaccount "clover-spark".
Created clusterrolebinding "clover-spark-default".
Created clusterrolebinding "clover-spark".
Created deployment "clover-spark-submit".
Image: opnfv/clover-spark-submit:latest

Verifying the deployment

To verify the visibility services deployment, ensure the following pods have been deployed
with the command below:

$ kubectl get pod --all-namespaces

NAMESPACE NAME READY STATUS
clover-system clover-collector-7dcc5d849f-6jc6m 1/1 Running
clover-system clover-controller-74d8596bb5-qrr6b 1/1 Running
clover-system cassandra-0 1/1 Running
clover-system redis 2/2 Running
clover-system clover-spark-submit-6c4d5bcdf8-kc6l9 1/1 Running

Additionally, spark driver and executor pods will continuously be deployed as displayed below:

clover-system clover-spark-0fa43841362b3f27b35eaf6112965081-driver
clover-system clover-spark-fast-d5135cdbdd8330f6b46431d9a7eb3c20-driver
clover-system clover-spark-0fa43841362b3f27b35eaf6112965081-exec-3
clover-system clover-spark-0fa43841362b3f27b35eaf6112965081-exec-4

Initializing visibility services

In order to setup visibility services, initialization and start commands must be
invoked from the cloverctl CLI. There are sample yaml files in yaml directory
from the cloverctl binary path. Navigate to this directory to execute the next
sequence of commands.

Initialize the visibility schemas in cassandra with the following command:

$ cloverctl init visibility

Using config file: /home/earrage/.cloverctl.yaml
clover-controller address: http://10.145.71.21:32044
Added visibility schemas in cassandra

The initial configuration to the visibility services are the Jaeger tracing and Prometheus
connection parameters and sample interval to clover-collector. To start visibility
use the sample yaml provided and execute the command:

cloverctl start visibility -f start_visibility.yaml

Started collector on pid: 44

The start_visibility.yaml has defaults for the tracing and monitoring modules packaged with
Istio 1.0.0.

Configure and control visibility

The core requirement for Clover visibility services to function, is for your services to be
added to the Istio service mesh. Istio deployment and usage instructions are in the
Clover SDC Sample Configuration Guide and the Service Delivery Controller (SDC) sample can be used to
evaluate the Clover visibility services initially. A user may inject their own web-based services
into the service mesh and track separately.

Connecting to visibility dashboard UI

The clover-controller service comes packaged with a web-based UI with a visibility view.
To access the dashboard, navigate to the clover-controller address for either a NodePort
or LoadBalancer service

	http://<node or CNI IP address>:<NodePort port>/

	http://<LoadBalancer IP address>/

See Exposing clover-controller to expose clover-controller externally with a k8s
service.

Set runtime parameters using Clover CLI

The services visibility will track are based on the deployment/pod names specified in the k8s
resources. Using some sample services from the SDC guide, the proxy-access-control,
clover-server1, clover-server2 and clover-server3 services are specified in the
set_visibility.yaml sample yaml referenced below.

To modify the configuration of the services visibility will track, use the cloverctl CLI,
executing the following command:

cloverctl set visibility -f set_visibility.yaml

Use the services: section of the yaml to configure service names to track.

set_visibility.yaml
services:
 - name: proxy_access_control
 - name: clover_server1
 - name: clover_server2
 - name: clover_server3
metric_prefixes:
 - prefix: envoy_cluster_outbound_9180__
 - prefix: envoy_cluster_inbound_9180__
metric_suffixes:
 - suffix: _default_svc_cluster_local_upstream_rq_2xx
 - suffix: _default_svc_cluster_local_upstream_cx_active
custom_metrics:
 - metric: envoy_tracing_zipkin_spans_sent

Set runtime parameters using dashboard UI

The services being tracked by visibility can also be configured by selecting from the
boxes under Discovered Services within the dashboard, as shown in the graphic below.
Services can be multi-selected by using by holding the Ctrl or command (Mac OS)
keyboard button down while selecting or unselecting. The SDC services that were configured from
the cloverctl CLI above are currently active, denoted as the boxes with blue backgrounds.

[image: ../../_images/visibility_discovered_active.png]
In order for any services to be discovered from Jaeger tracing and displayed within the dashboard,
some traffic must target the services of interest. Using curl/wget to send HTTP requests
to your services will cause services to be discovered. Using Clover JMeter validation services,
as detailed JMeter Validation Configuration Guide against SDC sample services will also generate a service
listing. The cloverctl CLI commands below will generate traces through the SDC service chain
with the JMeter master injected into the service mesh:

$ cloverctl create testplan –f yaml/jmeter_testplan.yaml # yaml located with cloverctl binary
$ cloverctl start testplan

Clearing visibility data

To clear visibility data in cassandra and redis, which truncates cassandra tables and
deletes or zeros out redis keys, use the following command:

$ cloverctl clear visibility

This can be useful when analyzing or observing an issue during a particular time horizon.
The same function can be performed from the dashboard UI using the Clear button under
Visibility Controls, as illustrated in the graphic from the previous section.

Viewing visibility data

The visibility dashboard can be used to view visibility data in real-time. The page will
automatically refresh every 5 seconds. To disable continuous page refresh and freeze on a
snapshot of the data, use the slider at the top of the page that defaults to On. Toggling
it will result in it displaying Off.

The visibility dashboard displays various metrics and graphs of analyzed data described in
subsequent sections.

System metrics

System metrics provide aggregate counts of cassandra tables including total traces, spans
and metrics, as depicted on the left side of the graphic below.

[image: ../../_images/visibility_system_counts_response_times.png]
The metrics counter will continually increase, as it is based on time series data from
Prometheus. The trace count will correspond to the number of HTTP requests sent to services
within the Istio service mesh. The span count ties to trace count, as it is a child object
under Jaeger tracing data hierarchy and is based on the service graph (number of interactions
between microservices for a given request). It will increase more rapidly when service graph
depths are larger.

Per service response times

Per service response times are displayed on the right side of the graphic above and are
calculated from tracing data when visibility is started. The minimum, maximum and average
response times are output over the entire analysis period.

Group by span field counts

This category groups schema fields in various combinations to gain insight into the composition
of HTTP data and can be used by CI scripts to perform various validations. Metrics include:

	Per service

	Distinct URL

	Distinct URL / HTTP status code

	Distinct user-agent (HTTP header)

	Per service / distinct URL

The dashboard displays bar/pie charts with counts and percentages, as depicted below. Each distinct
key is displayed when hovering your mouse over a chart value.

[image: ../../_images/visibility_distinct_counts.png]

Distinct HTTP details

A listing of distinct HTTP user-agents, request URLs and status codes is shown below divided
with tabs.

[image: ../../_images/visibility_distinct_http.png]

Monitoring Metrics

The Istio sidecars (Envoy) provide a lengthy set of metrics exposed through Prometheus. These
metrics can be analyzed with the visibility service by setting up metrics, as outlined in section
Set runtime parameters using Clover CLI. Use metric_prefixes and metric_suffixes
sections of the set visibility yaml for many Envoy metrics that have a key with the service
straddled by a prefix/suffix. A row in the table and a graph will be displayed for each
combination of service, prefix and suffix.

The metrics are displayed in tabular and scatter plots over time formats from the dashboard, as
shown in the graphic below:

[image: ../../_images/visibility_monitoring_metrics.png]

Uninstall from Kubernetes envionment

Delete with Clover CLI

When you’re finished working with Clover visibility services, you can uninstall them with the
following command:

$ cloverctl delete system visibility

The command above will remove the SDC sample services, Istio components and Jaeger/Prometheus
tools from your Kubernetes environment.

Uninstall from Docker environment

The OPNFV docker images can be removed with the following commands:

$ docker rmi opnfv/clover-collector
$ docker rmi opnfv/clover-spark
$ docker rmi opnfv/clover-spark-submit
$ docker rmi opnfv/clover-controller
$ docker rmi k8s.gcr.io/redis
$ docker rmi kubernetes/redis
$ docker rmi cassandra:3

ModSecurity Configuration Guide

This document provides a guide to setup the ModSecurity web application firewall
as a security enhancement for the Istio ingressgateway.

ModSecurity Overview

ModSecurity is an open source web application firewall. Essentially, ModSecurity
is an Apache module that can be added to any compatible version of Apache. To
detect threats, the ModSecurity engine is usually deployed embedded within the
webserver or as a proxy server in front of a web application. This allows the
engine to scan incoming and outgoing HTTP communications to the endpoint.

In Clover, we deploy ModSecurity on an Apache server and running it as a
Kubernetes service that reside in “clover-gateway” namespace.

ModSecurity provides very little protection on its own. In order to become
useful, ModSecurity must be configured with rules. Dependent on the rule
configuration the engine will decide how communications should be handled which
includes the capability to pass, drop, redirect, return a given status code,
execute a user script, and more.

In Clover, we choose the OWASP ModSecurity Core Rule Set (CRS) for use with
ModSecurity.

The OWASP ModSecurity Core Rule Set (CRS) is a set of generic attack detection
rules. The CRS aims to protect web applications from a wide range of attacks,
including the OWASP Top Ten, with a minimum of false alerts.

Ingress traffic security enhancement

In a typical Istio service mesh, ingressgateway terminates TLS from external
networks and allows traffic into the mesh.

[image: ../../_images/istio_gateway.png]
Clover enhances the security aspect of ingressgateway by redirecting all incoming
HTTP requests through the ModSecurity WAF. To redirect HTTP traffic to the ModSecurity,
Clover enables ext_authz (external authorization) Envoy filter on the ingressgateway.

For all incoming HTTP traffic, the ext_authz filter will authenticate each ingress
request with the ModSecurity service. To perform authentication, an HTTP subrequest
is sent from ingressgateway to ModSecurity where the subrequest is verified. If
the subrequest is clean, ModSecurity will return a 2xx response code, access is
allowed; If it returns 401 or 403, access is denied.

Deploying the ModSecurity WAF

Prerequisites

The following assumptions must be met before continuing on to deployment:

	Installation of Kubernetes has already been performed.

	Installation of Istio and Istio client (istioctl) is in your PATH.

Deploy from source

Clone the Clover git repository and navigate within the samples directory as
shown below:

$ git clone https://gerrit.opnfv.org/gerrit/clover
$ cd clover/samples/scenarios
$ git checkout stable/gambia

To deploy the ModSecurity WAF in the “clover-gateway” Kubernetes namespace, use
the following command:

$ kubectl create namespace clover-gateway
$ kubectl apply -n clover-gateway -f modsecurity_all_in_one.yaml

Verifying the deployment

To verify the ModSecurity pod is deployed, executing the command below:

$ kubectl get pod -n clover-gateway

The listing below must include the following ModSecurity pod:

$ NAME READY STATUS RESTARTS AGE
modsecurity-crs-cf5fffcc-whwqm 1/1 Running 0 1d

To verify the ModSecurity service is created, executing the command below:

$ kubectl get svc -n clover-gateway

The listing below must include the following ModSecurity service:

$ NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
modsecurity-crs NodePort 10.233.11.72 <none> 80:31346/TCP 1d

To verify the ext-authz Envoy filter is created, executing the command below:

$ istioctl get envoyfilter -n clover-gateway

The listing below must include the following Envoy filter:

$ NAME KIND NAMESPACE AGE
ext-authz EnvoyFilter.networking.istio.io.v1alpha3 istio-system 1d

ModSecurity configuration

OWASP ModSecurity CRS mode

The OWASP ModSecurity CRS can run in two modes:

	Anomaly Scoring Mode - In this mode, each matching rule increases an

‘anomaly score’. At the conclusion of the inbound rules, and again at the
conclusion of the outbound rules, the anomaly score is checked, and the blocking
evaluation rules apply a disruptive action, by default returning an error 403.

	Self-Contained Mode - In this mode, rules apply an action instantly. Rules

inherit the disruptive action that you specify (i.e. deny, drop, etc). The first
rule that matches will execute this action. In most cases this will cause evaluation
to stop after the first rule has matched, similar to how many IDSs function.

By default, the CRS runs in Anomally scoring mode.

You can configurate CRS mode by editing the crs-setup.conf in the modsecurity-crs
container:

$ kubectl exec -t -i -n clover-gateway [modsecurity-crs-pod-name] -c modsecurity-crs -- bash
$ vi /etc/apache2/modsecurity.d/owasp-crs/crs-setup.conf

Alert logging

By default, CRS enables all detailed logging to the ModSecurity audit log.
You can check the audit log using the command below:

$ kubectl exec -t -i -n clover-gateway [modsecurity-crs-pod-name] -c modsecurity-crs -- cat /var/log/modsec_audit.log

CRS Rules

By default, Clover enables all OWASP CRS rules. Below is a short description of all enabled rules:

	REQUEST-905-COMMON-EXCEPTIONS

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-905-COMMON-EXCEPTIONS.conf

Some rules are quite prone to causing false positives in well established software,
such as Apache callbacks or Google Analytics tracking cookie. This file offers
rules that will allow the transactions to avoid triggering these false positives.

	REQUEST-910-IP-REPUTATION

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-910-IP-REPUTATION.conf

These rules deal with detecting traffic from IPs that have previously been involved
with malicious activity, either on our local site or globally.

	REQUEST-912-DOS-PROTECTION

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-912-DOS-PROTECTION.conf

The rules in this file will attempt to detect some level 7 DoS (Denial of Service)
attacks against your server.

	REQUEST-913-SCANNER-DETECTION

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-913-SCANNER-DETECTION.conf

These rules are concentrated around detecting security tools and scanners.

	REQUEST-920-PROTOCOL-ENFORCEMENT

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-920-PROTOCOL-ENFORCEMENT.conf

The rules in this file center around detecting requests that either violate HTTP
or represent a request that no modern browser would generate, for instance missing
a user-agent.

	REQUEST-921-PROTOCOL-ATTACK

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-921-PROTOCOL-ATTACK.conf

The rules in this file focus on specific attacks against the HTTP protocol itself
such as HTTP Request Smuggling and Response Splitting.

	REQUEST-930-APPLICATION-ATTACK-LFI

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-930-APPLICATION-ATTACK-LFI.conf

These rules attempt to detect when a user is trying to include a file that would
be local to the webserver that they should not have access to. Exploiting this type
of attack can lead to the web application or server being compromised.

	REQUEST-931-APPLICATION-ATTACK-RFI

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-931-APPLICATION-ATTACK-RFI.conf

These rules attempt to detect when a user is trying to include a remote resource
into the web application that will be executed. Exploiting this type of attack can
lead to the web application or server being compromised.

	REQUEST-941-APPLICATION-ATTACK-SQLI

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-941-APPLICATION-ATTACK-SQLI.conf

Within this configuration file we provide rules that protect against SQL injection
attacks. SQL attackers occur when an attacker passes crafted control characters
to parameters to an area of the application that is expecting only data. The
application will then pass the control characters to the database. This will end
up changing the meaning of the expected SQL query.

	REQUEST-943-APPLICATION-ATTACK-SESSION-FIXATION

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-943-APPLICATION-ATTACK-SESSION-FIXATION.conf

These rules focus around providing protection against Session Fixation attacks.

	REQUEST-949-BLOCKING-EVALUATION

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/REQUEST-949-BLOCKING-EVALUATION.conf

These rules provide the anomaly based blocking for a given request. If you are in
anomaly detection mode this file must not be deleted.

	RESPONSE-954-DATA-LEAKAGES-IIS

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/RESPONSE-954-DATA-LEAKAGES-IIS.conf

These rules provide protection against data leakages that may occur because of Microsoft IIS

	RESPONSE-952-DATA-LEAKAGES-JAVA

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/RESPONSE-952-DATA-LEAKAGES-JAVA.conf

These rules provide protection against data leakages that may occur because of Java

	RESPONSE-953-DATA-LEAKAGES-PHP

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/RESPONSE-953-DATA-LEAKAGES-PHP.conf

These rules provide protection against data leakages that may occur because of PHP

	RESPONSE-950-DATA-LEAKAGES

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/RESPONSE-950-DATA-LEAKAGES.conf

These rules provide protection against data leakages that may occur genericly

	RESPONSE-951-DATA-LEAKAGES-SQL

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/RESPONSE-951-DATA-LEAKAGES-SQL.conf

These rules provide protection against data leakages that may occur from backend
SQL servers. Often these are indicative of SQL injection issues being present.

	RESPONSE-959-BLOCKING-EVALUATION

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/RESPONSE-959-BLOCKING-EVALUATION.conf

These rules provide the anomaly based blocking for a given response. If you are
in anomaly detection mode this file must not be deleted.

	RESPONSE-980-CORRELATION

Configuration Path: /etc/apache2/modsecurity.d/owasp-crs/rules/RESPONSE-980-CORRELATION.conf

The rules in this configuration file facilitate the gathering of data about
successful and unsuccessful attacks on the server.

Spinnaker Configuration Guide

This document provides a guide to setup the spinnaker in kubernetes as a continuous delivery platform.

Spinnaker Overview

Spinnaker is an open-source, multi-cloud continuous delivery platform that helps you release software changes with high velocity and confidence.

Spinnaker provides two core sets of features:

1. application management

You use Spinnaker’s application management features to view and manage your cloud resources.

2. application deployment

You use Spinnaker’s application deployment features to construct and manage continuous delivery workflows.

For more information on Spinnaker and its capabilities, please refer to documentation [https://www.spinnaker.io/].

Setup Spinnaker

Prerequisites

The following assumptions must be met before continuing on to deployment:

	Ubuntu 16.04 was used heavily for development and is advised for greenfield deployments.

	Installation of Docker has already been performed. It’s preferable to install Docker CE.

	Installation of Kubernetes has already been performed.

	A PersistentVolume resource need to be setup in k8s for the PersistentVolumeClaim to use. we supply the manifest file minio-pv.yml [https://github.com/opnfv/clover/blob/master/clover/spinnaker/install/minio-pv.yml] to create the PV, But it is not suitable for use in production.

Deploy from source

Clone the Clover git repository and navigate within the samples directory as shown below:

$ git clone https://gerrit.opnfv.org/gerrit/clover
$ cd clover/clover/spinnaker/install
$ git checkout stable/gambia

To deploy the Spinnaker in the “spinnaker” Kubernetes namespace, use the following command:

$ kubectl create -f quick-install-spinnaker.yml

NOTE: The quick-install-spinnaker.yml is obtained from https://www.spinnaker.io/downloads/kubernetes/quick-install.yml and modified.

Verifying the deployment

To verify the Spinnaker pods is deployed, executing the command below:

$ kubectl get pod -n spinnaker

The listing below must include the following Spinnaker pods:

$ NAME READY STATUS RESTARTS AGE
minio-deployment-5d84f45dd5-zjdzb 1/1 Running 0 22h
spin-clouddriver-795575c5cb-ph8qc 1/1 Running 0 22h
spin-deck-7c5d75bfcd-vr58q 1/1 Running 0 22h
spin-echo-7986796c94-4285v 1/1 Running 0 22h
spin-front50-5744674fdc-d9xsw 1/1 Running 0 22h
spin-gate-7978d55d57-jcsmq 1/1 Running 0 22h
spin-halyard 1/1 Running 0 22h
spin-igor-6f8c86bbbb-cs8gd 1/1 Running 0 22h
spin-orca-8659c57c5c-rs69z 1/1 Running 0 22h
spin-redis-558db8d5bd-kdmjz 1/1 Running 0 22h
spin-rosco-dfbbcbccd-db65b 1/1 Running 0 22h

To verify the Spinnaker services is created, executing the command below:

$ kubectl get svc -n spinnaker

The listing below must include the following Spinnaker services:

$ NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
minio-service ClusterIP 10.233.21.175 <none> 9000/TCP 22h
spin-clouddriver ClusterIP 10.233.9.27 <none> 7002/TCP 22h
spin-deck ClusterIP 10.233.34.86 <none> 9000/TCP 22h
spin-echo ClusterIP 10.233.29.150 <none> 8089/TCP 22h
spin-front50 ClusterIP 10.233.5.221 <none> 8080/TCP 22h
spin-gate ClusterIP 10.233.33.196 <none> 8084/TCP 22h
spin-halyard ClusterIP 10.233.2.187 <none> 8064/TCP 22h
spin-igor ClusterIP 10.233.29.93 <none> 8088/TCP 22h
spin-orca ClusterIP 10.233.23.140 <none> 8083/TCP 22h
spin-redis ClusterIP 10.233.20.95 <none> 6379/TCP 22h
spin-rosco ClusterIP 10.233.48.79 <none> 8087/TCP 22h

To publish the spin-deck service, we need change the type to NodePort, executing the command below:

$ kubectl get svc spin-deck -n spinnaker -o yaml |sed 's/ClusterIP/NodePort/' |kubectl replace -f -
$ kubectl get svc -n spinnaker

The listing below must include the following services

$ NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
minio-service ClusterIP 10.233.21.175 <none> 9000/TCP 22h
spin-clouddriver ClusterIP 10.233.9.27 <none> 7002/TCP 22h
spin-deck NodePort 10.233.34.86 <none> 9000:31747/TCP 22h
spin-echo ClusterIP 10.233.29.150 <none> 8089/TCP 22h
spin-front50 ClusterIP 10.233.5.221 <none> 8080/TCP 22h
spin-gate ClusterIP 10.233.33.196 <none> 8084/TCP 22h
spin-halyard ClusterIP 10.233.2.187 <none> 8064/TCP 22h
spin-igor ClusterIP 10.233.29.93 <none> 8088/TCP 22h
spin-orca ClusterIP 10.233.23.140 <none> 8083/TCP 22h
spin-redis ClusterIP 10.233.20.95 <none> 6379/TCP 22h
spin-rosco ClusterIP 10.233.48.79 <none> 8087/TCP 22h

In your browser, navigate to the following URLs for Spinnaker respectively:

http://<node IP>:31747

Where node IP is an IP from one of the Kubernetes cluster node(s).

[image: ../../_images/spinnaker.png]

Spinnaker Configuration

When the default installation is ready, there are many different components that you can turn on with Spinnaker. In order to customize Spinnaker, you can use the halyard command line or clover command line to edit the configuration and apply it to what has already been deployed.

Halyard Command

Halyard has an in-cluster daemon that stores your configuration. You can exec a shell in this pod to make and apply your changes.

For example:

$ kubectl exec spin-halyard -n spinnaker -it -- bash -il
spinnaker@spin-halyard:/workdir$ hal version list

How to use the halyard command line to configurate the spinnaker, please refer to commands documentation [https://www.spinnaker.io/reference/halyard/commands/].

Clover Command

Clover provider the cloverctl and clover-controller to controll the server. So we can use the cloverctl to configurate the spinnaker. So far, clover provide the capabilities to create/get/delete docker-registry and kubernetes provider in spinnaker.

NOTE: Before using clover command, you need build the clover command and setup the clover-controller in your local kubernetes cluster, where spinnaker deploy in.

Docker Registry

You need a configuration file written in YAML that describe the information about you Docker Registry as shown below:

docker.yml:

name: mydockerhub
address: https://index.docker.io
username: if-you-images-aren't-publicly-available
password: fill-this-field
repositories:
- opnfv/clover

If any of your images aren’t publicly available, you need fill your DockerHub username & password. Ortherwise you can delete the username & password field.

Creating the Docker Registry in spinnaker:

$ cloverctl create provider docker-registry -f docker.yml

Getting the Docker Registry in spinnaker:

$ cloverctl get provider docker-registry

Deleting the Docker Registry in spinnaker:

$ cloverctl delete provider docker-registry -n dockerhub

Kubernetes

By default, installing the manifest only registers the local cluster as a deploy target for Spinnaker. If you want to add arbitrary clusters you can use the cloverctl command

You need a running Kubernetes cluster, with corresponding credentials in a kubeconfig file(/path/to/kubeconfig). And You also need a configuration file written in YAML that describe the information about your kubernetes cluseter as shown below:

kubernetes.yml:

name must match pattern ^[a-z0-9]+([-a-z0-9]*[a-z0-9])?$'
name: my-kubernetes
providerVersion: V1
make sure the kubeconfigFile can be use
kubeconfigFile: /path/to/kubeconfig
dockerRegistries:
- accountName: dockerhub

Creating the kubernetes provider in spinnaker:

$ cloverctl create provider kubernetes -f kubernetes.yml

Getting the kubernetes provider in spinnaker:

$ cloverctl get provider kubernetes

Deleting the kubernetes provider in spinnaker:

$ cloverctl delete provider kubernetes -n my-kubernetes

Deploy Helm Charts

Currently, spinnaker support to deploy applications with the helm chart. More information please refer to Deploy Helm Charts [https://www.spinnaker.io/guides/user/kubernetes-v2/deploy-helm/].

Upload helm charts to artifacts

Before doing this, please package the helm chart first. how to package the chart, refer to helm documentation [https://docs.helm.sh/helm/#helm_package].

$ wget https://dl.minio.io/client/mc/release/linux-amd64/mc
$ chmod +x mc
$./mc config host add my_minio http://{minio-service-ip}:9000 dont-use-this for-production S3v4
$./mc mb my_minio/s3-account
$./mc cp test-0.1.0.tgz my_minio/s3-account/test-0.1.0.tgz

NOTE: the minio-service-ip is 10.233.21.175 in this example

Configure Pipeline

This pipeline include three stages,configuration, bake and deploy.

Configuration stage

We can configure Automated triggers and expected artifacts in this stage.
We just declare expected artifacts and trigger the pipeline manually.

[image: ../../_images/spinnaker-expected-artifacts.png]
NOTE: We need to enable “Use Default Artifact”, when we need trigger the pipeline manually

Bake Manifest stage

For example, we have a test “Bake(Manifest)” stage below

[image: ../../_images/spinnaker-bake.png]
Spinnaker has automatically created an embedded/base64 artifact that is bound when the stage completes, representing the fully baked manifest set to be deployed downstream.

[image: ../../_images/spinnaker-produces-artifact.png]

Deploy Manifest stage

After the chart was baked by helm, we can configure a “Deploy(Manifest)” stage to deploy the manifest produced by previous stage as shown below.

[image: ../../_images/spinnaker-deploy.png]
Once this pipeline runs completely, you can see every resource in your Helm chart get deployed.

Clovisor Configuration Guide

Clovisor requires minimal to no configurations to function as a network tracer.
It expects configurations to be set at a redis sever running at clover-system
namespace.

No Configuration

If redis server isn’t running as service name redis in namespace
clovisor or there isn’t any configuration related to Clovisor in that
redis service, then Clovisor would monitor all pods under the default
namespace. The traces would be sent to jaeger-collector service under the
clovisor namespace

Using redis-cli

Install redis-cli on the client machine, and look up redis IP address:

$ kubectl get services -n clovisor

which one may get something like the following:

$
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
redis ClusterIP 10.109.151.40 <none> 6379/TCP 16s

if (like above), the external IP isn’t visible, one may be able to get the pod
IP address directly via the pod (for example, it works with Flannel as CNI
plugin):

$ kubectl get pods -n clover-system -o=wide
NAME READY STATUS RESTARTS AGE IP NODE
redis 2/2 Running 0 34m 10.244.0.187 clover1804

and one can connect to redis via:

kubectl exec -n clovisor -it redis redis-cli

Jaeger Collector Configuration

Clovisor allows user to specify the Jaeger service for which Clovisor would send
the network traces to, by default it is Jaegar service running in clovisor namespace. To change, user can configure via setting the values for
keys clovisor_jaeger_collector and clovisor_jaeger_agent:

redis> SET clovisor_jaeger_collector "jaeger-collector.istio-system:14268"
"OK"
redis> SET clovisor_jaeger_agent "jaeger-agent.istio-system:6831"
"OK"

Configure Monitoring Namespace and Labels

Configruation Value String Format:

<namespace>[:label-key:label-value]

User can configure namespace(s) for Clovisor to tap into via adding namespace
configuration in redis list clovisor_labels:

redis> LPUSH clovisor_labels "my-namespace"
(integer) 1

the above command will cause Clovisor to NOT monitor the pods in default
namespace, and only monitor the pods under my-namespace.

If user wants to monitor both ‘default’ and ‘my-namespace’, she needs to
explicitly add ‘default’ namespace back to the list:

redis> LPUSH clovisor_labels "default"
(integer) 2
redis> LRANGE clovisor_labels 0 -1
1.) "default"
2.) "my-namespace"

Clovisor allows user to optionally specify which label match on pods to further
filter the pods to monitor:

redis> LPUSH clovisor_labels "my-2nd-ns:app:database"
(integer) 1

the above configuration would result in Clovisor only monitoring pods in
my-2nd-ns namespace which matches the label “app:database”

User can specify multiple labels to filter via adding more configuration
entries:

redis> LPUSH clovisor_labels "my-2nd-ns:app:web"
(integer) 2
redis> LRANGE clovisor_labels 0 -1
1.) "my-2nd-ns:app:web"
2.) "my-2nd-ns:app:database"

the result is that Clovisor would monitor pods under namespace my-2nd-ns which
match EITHER app:database OR app:web

Currently Clovisor does NOT support filtering of more than one label per
filter, i.e., no configuration option to specify a case where a pod in a
namespace needs to be matched with TWO or more labels to be monitored

Configure Egress Match IP address, Port Number, and Matching Pods

Configruation Value String Format:

<IP Address>:<TCP Port Number>[:<Pod Name Prefix>]

By default, Clovisor only traces packets that goes to a pod via its service
port, and the response packets, i.e., from pod back to client. User can
configure tracing packet going OUT of the pod to the next microservice, or
an external service also via the clovior_egress_match list:

redis> LPUSH clovior_egress_match "10.0.0.1:3456"
(integer) 1

the command above will cause Clovisor to trace packet going out of ALL pods
under monitoring to match IP address 10.0.0.1 and destination TCP port 3456 on
the EGRESS side — that is, packets going out of the pod.

User can also choose to ignore the outbound IP address, and only specify the
port to trace via setting IP address to zero:

redis> LPUSH clovior_egress_match "0:3456"
(integer) 1

the command above will cause Clovisor to trace packets going out of all the pods
under monitoring that match destination TCP port 3456.

User can further specify a specific pod prefix for such egress rule to be
applied:

redis> LPUSH clovior_egress_match "0:3456:proxy"
(integer) 1

the command above will cause Clovisor to trace packets going out of pods under
monitoring which have name starting with the string “proxy” that match destination
TCP port 3456

Clovisor in Hunter release supports the ability to run user-defined protocol analyzer as a plugin library — and the corresponding traces will be sent to Jaeger just like all the default Clovisor network tracing. User needs to implement the following interface (only golang is supported at this time):

type Parser interface {
 Parse(session_key string, is_req bool,
 data []byte)([]byte, map[string]string)
}

and compile it with the following command:

go build --buildmode=plugin -o <something>.so <something>.go

then, for Hunter, one needs to push the .so to each Clovisor instance:

kubectl cp <something>.so clovisor/clovisor-bnh2v:/proto/<something>.so

do that for each Clovisor pods, and afterward, configure via:

redis> HSET clovisor_proto_cfg <protocol> "/proto/<something>.so"
(integer) 1
redis> PUBLISH clovisor_proto_plugin_cfg_chan <protocol>
(integer) 6

OPNFV Clover Design Specification

	Clovisor

	Logging

	Monitoring

	Tracing

Clovisor

What is Clovisor?

One of Clover’s goals is to investigate an optimal way to perform network
tracing in cloud native environment. Clovisor is project Clover’s initial
attempt to provide such solution.

Clovisor is named due to it being “Clover’s use of IOVisor”. IOVisor [https://github.com/iovisor] is a
set of tools to ease eBPF code development for tracing, monitoring, and other
networking functions. BPF stands for Berkeley Packet Filter, an in-kernel
virtual machine like construct which allows developers to inject bytecodes in
various kernel event points. More information regarding BPF can be found
here [https://cilium.readthedocs.io/en/v1.2/bpf/]. Clovisor utilizes the goBPF [https://github.com/iovisor/gobpf] module from IOVisor as part of its
control plane, and primarily uses BPF code to perform packet filtering in the
data plane.

Clovisor Functionality

Clovisor is primarily a session based network tracing module, that is, it
generates network traces on a per-session basis, i.e., on a request and response
pair basis. It records information pertaining to L3/L4 and L7 (just HTTP 1.0 and
1.1 for now) regarding the session. The traces are sent to Jaeger server who
acts as tracer, or trace collector.

Clovisor Requirement

Clovisor is tested on kernel versions 4.14.x and 4.15.x. For Ubuntu servers
built-in kernel, it requires Ubuntu version 18.04.

Clovisor Workflow

Clovisor runs as a DaemonSet [https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/] — that is, it runs on every nodes in a
Kubernetes cluster, including being automatically launched in newly joined node.
Clovior runs in the “clovisor” Kubernetes namespace, and it needs to run in
privilege mode and be granted at least pod and service readable right for the
Kubernetes namespace(s) in which it is monitoring, i.e., a RBAC needs to be set
up to grant such access right to the clovisor namespace service account.

Clovisor looks for its configuration(s) from redis server in clover-system
namespace. The three config info for Clovisor for now are:

	clovisor_labels, a list of labels which Clovisor would filter for monitoring

	clovisor_egress_match, a list of interested egress side IP/port for outbound
traffic monitoring

	clovisor_jaeger_server, specifying the Jaeger server name / port to send
traces to

By default Clovisor would monitor all the pods under the ‘default’ namespace.
It will read the service port name associated with the pod under monitoring,
and use the service port name to determine the network protocol to trace.
Clovisor expects the same service port naming convention / nomenclature as
Istio, which is specified in istio [https://istio.io/docs/setup/kubernetes/spec-requirements/]. Clovisor extracts expected network
protocol from these names; some examples are

apiVersion: v1
kind: Service
[snip]
spec:
 ports:
 - port: 1234
 name: http

With the above example in the service specification, Clovisor would specifically
look to trace HTTP packets for packets matching that destination port number on
the pods associated with this service, and filter everything else. The
following has the exact same bahavior

apiVersion: v1
kind: Service
[snip]
spec:
 ports:
 - port: 1234
 name: http-1234

Clovisor derived what TCP port to monitor via the container port exposed by the
pod in pod spec. In the following example:

spec:
 containers:
 - name: foo
 image: localhost:5000/foo
 ports:
 - containerPort: 3456

Packets with destination TCP port number 3456 will be traced for the pod on the
ingress side, likewise for packet with source TCP port number 3456 on the
ingress side (for receiving response traffic tracing). This request-response
pair is sent as a span [https://github.com/opentracing/specification/blob/master/specification.md].

In addition, Clovisor provides egress match configurion where user can
configure the (optional) IP address of the egress side traffic and TCP port
number for EGRESS or outbound side packet tracing. This is particularly useful
for the use case where the pod sends traffic to an external entity (for
example, sending to an external web site on port 80). User can further specify
which pod prefix should the rules be applied.

Clovisor is a session-based network tracer, therefore it would trace both the
request and response packet flow, and extract any information necessary (the
entire packet from IP header up is copied to user space). In Gambia release
Clovisor control plane extracts source/destination IP addresses (from request
packet flow perspective), source/destination TCP port number, and HTTP request
method/URL/protocol as well as response status/status code/protocol, and
overall session duration. These information is being logged via OpenTracing
APIs to Jaeger.

Clovisor Control Plane

There are two main elements of Clovisor control plane: Kubernetes client and
BPF control plane using IOVisor BCC.

Kubernetes client is used for the following needs:

	fetches the pods pertaining to filter (‘default’ namespace by default
without filter)

	fetches corresponding service port name to determine network protocol to
trace (TCP by default)

	extracts veth interface index for pod network interface

	watches for pod status change, or if new pod got launched that matches the
filter

Clovisor uses goBPF from IOVisor BCC project to build its control plane for BPF
datapath, which does:

	via netlink [https://github.com/vishvananda/netlink], under the pod veth interface on the Linux host side, creates
a QDisc [http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html] with name ‘classact’ with ingress and egress filters created
under it

	dynamically compiles and loads BPF code “session_tracing.c” and sets ingress
and egress functions on the filters created above

	sets up perfMap (shared packet buffer between user space and kernel) and
sets up kernel channel to poll map write event

	sets up timer task to periodically logs and traces interested packets

Clovisor Data Plane

Clovisor utilizes BPF for data plane packet analysis in kernel. BPF bytecode
runs in kernel and is executed as an event handler. Clovisor’s BPF program has
an ingress and egress packet handling functions as loadable modules for
respective event trigger points, i.e., ingress and egress on a particular Linux
network interface, which for Clovisor is the pod associated veth. There are
three tables used by the Clovisor BPF program:

	dports2proto: control plane -> data plane: the container/service port and
corresponding protocol (TCP, HTTP…etc) to trace on the ingress side

	egress_lookup_table: control plane -> data plane: the list of egress IP
address / ports which Clovisor should trace on the egress side

	sessions: data plane -> control plane: BPF creates entries to this table to
record TCP sessions

Clovisor Clean Up

As mentioned above, on a per pod basis, Clovisor creates a qdisc called
‘classact’ per each pod veth interface. This kernel object does not get deleted
by simply killing the Clovisor pod. The cleanup is done via Clovisor either via
pod removal, or when the Clovisor pod is deleted. However, IF the qdisc is not
cleaned up, Clovisor would not be able to tap into that same pod, more
specifically, that pod veth interface. The qdisc can be examined via the
following command:

sudo tc qdisc show

and you should see something like this:

qdisc clsact ffff: dev veth4c47cc75 parent ffff:fff1

in case it wasn’t removed at the end, user can manually remove it via:

sudo tc qdisc del dev veth4c47cc75 clsact

(of course, the qdisc should be removed by Clovisor, otherwise it is a Clovisor
bug)

Logging

Installation

Currently, we use the sample configuration [https://istio.io/docs/tasks/telemetry/fluentd.html] in Istio to install fluentd:

cd clover/logging

First, install logging stack Elasticsearch, Fluentd and Kibana:

kubectl apply -f install/logging-stack.yaml

Note that, it must be done in separated steps. If you run kubectl apply -f
install instead, the mixer adapter may fail to intialize because the target
service can not be found. You may find an error message from mixer container:

2018-05-09T02:43:14.435156Z error Unable to initialize adapter:
snapshot='6', handler='handler.fluentd.istio-system', adapter='fluentd',
err='adapter instantiation error: dial tcp: lookup fluentd-es.logging on
10.96.0.10:53: no such host'.

Then configure fluentd for istio:

kubectl apply -f install/fluentd-istio.yaml

Configure fluentd for node level logging:

kubectl apply -f install/fluentd-daemonset-elasticsearch-rbac.yaml

Validate

The scripts in clover/logging validates fluentd installation:

python clover/logging/validate.py

It validates the installation with the following criterias

	existence of fluented pod

	fluentd input is configured correctly

	TBD

Understanding how it works

In clover stack, Istio is configured to automatically gather logs for services
in a mesh. More specificly, it is configured in Mixer [https://istio.io/docs/concepts/policy-and-control/mixer.html]:

- when to log
- what to log
- where to log

When to log

Istio defines when to log by creating a custom resource rule. For example:

apiVersion: "config.istio.io/v1alpha2"
kind: rule
metadata:
 name: newlogtofluentd
 namespace: istio-system
spec:
 match: "true" # match for all requests
 actions:
 - handler: handler.fluentd
 instances:
 - newlog.logentry

This rule specifies that all instances of newlog.logentry that matches the
expression will be handled by the specified handler handler.fluentd. We
shall explain instances and handler later. The expression true means
whenever a request arrive at Mixer, it will trigger the actions defined belows.

rule is a custom resource definition from Istio installation [https://github.com/istio/istio/blob/master/install/kubernetes/templates/istio-mixer.yaml.tmpl].

Rule to send logentry instances to the fluentd handler
kind: CustomResourceDefinition
apiVersion: apiextensions.k8s.io/v1beta1
metadata:
 name: rules.config.istio.io
 labels:
 package: istio.io.mixer
 istio: core
spec:
 group: config.istio.io
 names:
 kind: rule
 plural: rules
 singular: rule
scope: Namespaced
version: v1alpha2

What to log

The instance defines what content to be logged.

> A (request) instance is the result of applying request attributes to the
> template mapping. The mapping is specified as an instance configuration.

For example:

Configuration for logentry instances
apiVersion: "config.istio.io/v1alpha2"
kind: logentry
metadata:
 name: newlog
 namespace: istio-system
spec:
 severity: '"info"'
 timestamp: request.time
 variables:
 source: source.labels["app"] | source.service | "unknown"
 user: source.user | "unknown"
 destination: destination.labels["app"] | destination.service | "unknown"
 responseCode: response.code | 0
 responseSize: response.size | 0
 latency: response.duration | "0ms"
 monitored_resource_type: '"UNSPECIFIED"'

The keys under spec should conform to the template. To learn what fields
are available and valid type, you may need to reference the corresponding
template, in this case, Log Entry template [https://istio.io/docs/reference/config/template/logentry.html].

The values of each field could be either Istio attributes [https://istio.io/docs/concepts/policy-and-control/attributes.html] or an expression.

> A given Istio deployment has a fixed vocabulary of attributes that it
> understands. The specific vocabulary is determined by the set of attribute
> producers being used in the deployment. The primary attribute producer in
> Istio is Envoy, although Mixer and services can also introduce attributes.

Refer to the Attribute Vocabulary [https://istio.io/docs/reference/config/mixer/attribute-vocabulary.html] to learn the full set.

By the way, logentry is also a custom resource definition created by Istio.

Where to log

For log, the handler defines where these information will be handled, in this
example, a fluentd daemon on fluentd-es.logging:24224.

Configuration for a fluentd handler
apiVersion: "config.istio.io/v1alpha2"
kind: fluentd
metadata:
 name: handler
 namespace: istio-system
spec:
 address: "fluentd-es.logging:24224"

In this example, handlers (handler.fluentd) configure Adapters [https://istio.io/docs/concepts/policy-and-control/mixer.html#adapters]
(fluentd) to handle the data delivered from the created instances
(newlog.logentry).

An adapter only accepts instance of specified kind. For example,
fluentd adapter [https://istio.io/docs/reference/config/adapters/fluentd.html] accepts logentry but not other kinds.

Monitoring

Installation

Currently, we use the Istio build-in prometheus addon to install prometheus:

cd <istio-release-path>
kubectl apply -f install/kubernetes/addons/prometheus.yaml

Validate

Setup port-forwarding for prometheus by executing the following command:

kubectl -n istio-system port-forward $(kubectl -n istio-system get pod -l app=prometheus -o jsonpath='{.items[0].metadata.name}') 9090:9090 &

Run the scripts in clover/monitoring validates prometheus installation:

python clover/monitoring/validate.py

It validates the installation with the following criterias

	[DONE] prometheus pod is in Running state

	[DONE] prometheus is conneted to monitoring targets

	[TODO] test collecting telemetry data from istio

	[TODO] TBD

Tracing

Installation

Currently, we use the Jaeger tracing all-in-one Kubernetes template for development and testing,
which uses in-memory storage. It can be deployed to the istio-system namespace with the
following command:

kubectl apply -n istio-system -f https://raw.githubusercontent.com/jaegertracing/jaeger-kubernetes/master/all-in-one/jaeger-all-in-one-template.yml

The standard Jaeger REST port is at 16686. To make this service available outside of the
Kubernetes cluster via any node IP in the cluster, use the following command:

kubectl expose -n istio-system deployment jaeger-deployment --port=16686 --type=NodePort

Kubernetes will expose the Jaeger service on another port from 30000-32767 and the assignment can
be found with:

kubectl get svc -n istio-system

An example listing from the command above is shown below where the Jaeger service is exposed
externally on port 30888 in this case:

istio-system jaeger-deployment NodePort 10.104.113.94 <none> 16686:30888/TCP

Jaeger will be accessible using the host IP of any node in Kubernetes cluster and port provided.
With this method, the Jaeger UI will also be available from a remote host. If external access is
required to Jaeger but restricted to cluster localhost(s), an alternate method is to use the
port-forward command in the foreground, as shown below:

kubectl -n istio-system port-forward $(kubectl -n istio-system get pod -l app=jaeger -o jsonpath='{.items[0].metadata.name}') 16686:16686

Validate

The script in clover/tracing validates Jaeger installation:

python clover/tracing/validate.py

It validates the installation with the following criteria:

	Existence of Jaeger all-in-one deployment using Kubernetes

	Jaeger service is accessible using IP address and port configured in installation steps

	Optionally, if Jaeger can retrieve service listing for default Istio components
(istio-ingress, istio-mixer). At least one HTTP request must be sent to istio-ingress
after initial Jaeger deployment for this validation to function.

Index

A-B Sample Validation Configuration Guide

Istio supports the ability to have multiple service versions, which allows for use-cases
such as staging services and moving to production when newer versions are vetted. Multiple variants
of a service can run in parallel and Istio can perform request routing between the variants
using configured route rules.

This script sets up route rules between the two load balancer versions (http-lb-v1/v2) in the
Service Delivery Controller (SDC) sample to modify the ratio of incoming request traffic to send
to each. It then employs the overall request/response times obtained from the tracing module to
validate the response time performance of v2 is within 120% of v1. The 120% condition can be
configured in an input configuration yaml.

Using the sample script

Prerequisites

The following assumptions must be met before executing the sample script:

	The prerequisites stipulated at Prerequisites are considered. The use of flannel
as the CNI network add-on is required.

	Ensure the SDC sample is deployed. The easiest way to accomplish this is using the Clover
container outlined in the SDC guide at Deploy with Clover container.

	Deploy Jaeger tracing and determine the tracing port. The instructions in the SDC guide
at Exposing tracing and monitoring can be used for this purpose. The exposed tracing port is
required as the -p argument in the script.

	The http-lb-v2 in the SDC sample is load balancing across clover-server4/5 using the
command outlined at Modifying the http-lb server list

	Ensure Istio is in the path by downloading Istio separately into a directory with the
commands below:

$ curl -L https://github.com/istio/istio/releases/download/1.0.0/istio-1.0.0-linux.tar.gz | tar xz
$ cd istio-1.0.0
$ export PATH=$PWD/bin:$PATH

Environment setup

First setup the environment using the Clover source with the following commands:

$ git clone https://gerrit.opnfv.org/gerrit/clover
$ cd clover
$ git checkout stable/gambia
$ pip install .
$ cd clover

Edit the input configuration yaml file located at test/yaml/fraser_a_b_test.yaml
and modify the value under the params key with the istio-ingress port obtained using
the SDC guide at Determining the ingress IP and port. The example of port 32580 is shown below.

traffic-test:
 name: lb-test.sh
 params:
 - 10.244.0.1
 - 32580

Execute toplevel script

To execute the script, use the command:

$ python test/fraser_a_b_test.py -t test/yaml/fraser_a_b_test.yaml -p 30869

The value to the argument -p must be the tracing port exposed outside of the Kubernetes
cluster.

Results

The script uses wget to make twenty HTTP GET requests to the SDC sample. It fetches the
total response time for the service mesh to respond to requests using the Clover tracing module
and calculates and average. The script will pass if performance of http-lb-v2 has response times
within 120% of v1 and fail otherwise.

Troubleshooting

If the script fails because a route rule with the same name exists from a
previous test run, use the following command to delete the rule before executing the
sample script again:

istioctl -n default delete routerules lb-default

 _images/visibility_distinct_counts.png
Per URL / HTTP Status Godes (all services) User-Agent Percentage.

-

RN

i
H
H

_images/visibility_distinct_http.png
HTTP Details

tpsnon-ds/
Nt lover-servert 9100/
N clover-server 9100/

N clover-server29100/
pmpb 9180/
et e’ M Check
it prony-sccess-contl defaut 9120/

_images/spinnaker.png
e Search | projects, applications, clusters, load balancers, server groups, security groups. Actions +

_images/visibility_discovered_active.png
Visibility Dashboard
Visibility Controls

|- m] - |

Discovered Services

snorids o isto-mber [ooger-query | sto-paicy | cover motarmasor st ngrossqatowy 560 tolomety clovorsarvers clover sovors [

\ o

_images/visibility_system_counts_response_times.png
Visioiity System Counts
Traces: 20
Spans: 189
Metrics: 2192

“Tracing Metrics

Service
clover-server3
clover-server2
clover-server!
proxy-access-

control

Service Response Times

Min(ms)
068
0.88
062
474

Avg(ms)
191
249
224
7.59

Max(ms)
333
414
410

13.20

_static/ajax-loader.gif

_images/visibility_monitoring_metrics.png
_default_sve_cluster_local_upsiream_ox_active

Monitoring Metrics

onoy_clsto inbound_9180_clove_serverd_dfaut._s._luster_Jocal upsiroam.19_20x
envoy, cstar inbound_910_prony. acces, conol dfault.sue Gusar focsl upsream, 2,246
anvoy. lustr_outbound_9180_proe.accosscontol dlaull e, cstar Joo upstram 13 22
ooy citerotbound_9180_cloverseverdefaut s clster ocalupstesm 1 2ex
ooy custr nbound 9180._presy.access contol defaut s, clusto local wsiroam. o 3cie
omvoy._custor_utbound_3T80_proxy.access._conrldefaut sve_clstr_ocalupsteam o acte.
evoy, it outhound 9180_clovar.sérve deeu ve kst loca upsleamcx actve
envoy clusts oo 9180_covr sarver._cafau, e, chstr Jocal upstean. o aci

CEE TR TETEE T Y

clover_server3
envoy_cluster_inbound_9180_

clover_server3
envoy_cluster_inbound_9180_
_defaultsve_cluster_local upstream_rq_2xx

20102
oy
sosarr
200072

_images/visibility_overview.png
mm&“/

RESTAPI a “‘*“‘

Spmaler

cicp : i
Tes X ©
L flventd @ |

ae

clover-controller clover-collector

N data pipeline (future)

_static/comment-bright.png

_images/spinnaker-deploy.png
Configuration Bake (Manifest)

@ Deploy (Manitest)

© add stage BN Copy an existing stage:

Deploy (Manifest) StageName | Deploy (Maniest Remove stage
Stage type: Deploy (Manifest)

Deploy a Kubernetes manifest yaml/json file. Depends On & Bake (Manifest) L} & Edit stage as JSON
DEPLOY (MANIFEST) CONFIGURATION Deploy (Manifest) Configuration

EXECUTION OPTIONS

NOTIFICATIONS Basic Settings

COMMENTS Account © my-kubernetes-account B

PRODUCES ARTIFACTS Application © demo.

Manifest Configuration

Manifest Source © © Text - copy from running infrastructure

Artifact

Expected Artifact® Bl name: helm-test, type: embedded/base64 -

_images/spinnaker-expected-artifacts.png
CONCURRENT EXECUTIONS
AUTOMATED TRIGGERS
PARAMETERS
NOTIFICATIONS
DESCRIPTION

EXPECTED ARTIFACTS (1)

Expected Artifacts
Declare artifacts your pipeline expects d

Match against ©

o .

Objectpath© | s3:/s3account/test-0.L01gz

Ifmissing ©

Use Prior Execution

Use Default Artifact

Default artifact ©

o .

Objectpath© | s3:/s3account/test-0.L01gz

execution in this section. &

AnS3 object.

AS3object.

© Add Artifact

1 Remove artifact

_images/sdc_tracing.png
Find Traces

o .

- .

& Traces o e
—ah e -
[———r——— o

e [y [Tre— o) Wiy 10
== e

e ——————

= . e — == —

_images/spinnaker-bake.png
Sonfiguation @BeManifes) __________ Deploy (Manifest)

© add stage BN Copy an existing stage:

Bake (Manifest) Stage Name Bake (Manifest) & Remove soge
Stage type: Bake (Manifest)
Bake 2 manifest (or mult.doc manfestset) using 2 ono 2 Editstage as JSON
template renderer suchas Helm. = Be
BAKE (MANIFEST) CONFIGURATION Bake (Manifest) Configuration
EXECUTION OPTIONS
NOTIFICATIONS Template Renderer
COMMENTS Render Engine HELM2 B
PRODUCES ARTIFACTS Name helmitest
Namespace
Template Artifact
Expected Artifact® 1 name: s3;//s3-account/test-0.1.0.tgz, type: s3/object -
Overrides
© Add value artifact
Overrides Key Value

©addoverride

_images/spinnaker-produces-artifact.png
Produces Artifacts

Match against © i Remove arifact

.| Anartifact that includes s referenced resource s part of its
payload.

Name helmtest

I missing ©
Use Default Artifact)

© Add Artifact

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 OPNFV Clover

 		
 Clover User Guide

 		
 Clover User Guide (Gambia Release)

 		
 Description

 		
 What is in Hunter?

 		
 Usage

 		
 OPNFV Clover Release Notes

 		
 Version history

 		
 Important notes

 		
 Summary

 		
 Release Data

 		
 Known Limitations, Issues and Workarounds

 		
 Test Result

 		
 References

 		
 Clover Configuration Guide

 		
 Clover Controller Services Configuration Guide

 		
 Overview

 		
 Deploying Clover system services

 		
 Exposing clover-controller

 		
 Uninstall from Kubernetes environment

 		
 Uninstall from Docker environment

 		
 Clover SDC Sample Configuration Guide

 		
 Overview

 		
 Deploying the sample

 		
 Using the sample

 		
 Modifying the run-time configuration of services

 		
 Advanced Usage

 		
 Uninstall from Kubernetes envionment

 		
 Uninstall from Docker environment

 		
 JMeter Validation Configuration Guide

 		
 Overview

 		
 Deploying Clover JMeter service

 		
 Using JMeter Validation

 		
 Uninstall from Kubernetes environment

 		
 Uninstall from Docker environment

 		
 Clover Visibility Services Configuration Guide

 		
 Overview

 		
 Deploying the visibility engine

 		
 Initializing visibility services

 		
 Configure and control visibility

 		
 Viewing visibility data

 		
 Uninstall from Kubernetes envionment

 		
 Uninstall from Docker environment

 		
 ModSecurity Configuration Guide

 		
 ModSecurity Overview

 		
 Ingress traffic security enhancement

 		
 Deploying the ModSecurity WAF

 		
 ModSecurity configuration

 		
 Spinnaker Configuration Guide

 		
 Spinnaker Overview

 		
 Setup Spinnaker

 		
 Spinnaker Configuration

 		
 Deploy Helm Charts

 		
 Clovisor Configuration Guide

 		
 No Configuration

 		
 Using redis-cli

 		
 Jaeger Collector Configuration

 		
 Configure Monitoring Namespace and Labels

 		
 Configure Egress Match IP address, Port Number, and Matching Pods

 		
 OPNFV Clover Design Specification

 		
 Clovisor

 		
 What is Clovisor?

 		
 Clovisor Functionality

 		
 Clovisor Requirement

 		
 Clovisor Workflow

 		
 Clovisor Control Plane

 		
 Clovisor Data Plane

 		
 Clovisor Clean Up

 		
 Logging

 		
 Installation

 		
 Validate

 		
 Understanding how it works

 		
 Monitoring

 		
 Installation

 		
 Validate

 		
 Tracing

 		
 Installation

 		
 Validate

_images/jmeter_overview.png
~ Y
(K8s
cloveretl | clover-controler _.----~—.__ .
R \ HTTP Requests

cloverjmeter-master cloverjmeter-slave

_static/down.png

_images/sdc_sample.png
hitp requests

snott alerts
(GRPC)

A

istio-ingress

8. proxy-
access-control

ntrol-agent ‘j
£

. E reconfiguration

load balancing *s,|
reconfiguration

_static/comment.png

_images/istio_gateway.png
Access external service
directly from sidecar

H

1 Access external
I service via egress
I gateway

Workload A Workload B

/
N Mesh bounda ’

N e -

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

